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SUMMARY

The design of rocket engines 1s based on knowledge of the local
values of heat-transfer coefficient. One of the more attractive experi-
mental methods for gaining gas-side heat-transfer coefficients is by
transient heat-transfer measurement in a solid-wall, heat-capacitance
rocket engine. This technique obviates some of the instrumentation dif-
ficulties that would be encountered if a liquid-cooled engine were used
to measure local steady-state heat-transfer data.

The transient heat-transfer data obtained from a thermal-capacitance
rocket can be analyzed by a number of methods. These vary in complexity
from approximate methods to rather complex solutions of the partial dif-
ferential equations of unsteady heat conduction. Six analytical tech-
niques for determining heat-transfer coefficients from transient exper-
imental data are discussed and applied to obtain local values of heat~
transfer coefficients in an ammonia-oxygen rocket. The integration
method appears to be the best of the six from the standpoint of possible
accuracy in the determination of local heat-transfer coefficients.

INTRODUCTION

The design of rocket engines necessitates obtaining local gas-side
experimental heat-transfer coefficients in order to determine the valid-
ity of empirical methods of calculating heat-transfer coefficients.

Heat transfer can be measured in a rocket engine by either steady-
state or transient techniques. To obtain steady-state conditions in a
rocket motor whose gas temperature is above the melting point of the
metal, the walls must be cooled. This type of engine presents instru~
mentation difficulties in that generally the coolant passages are small



and the passage walls are thin. Transient heat-transfer data may be ob-

tained from solid-wall rocket engines. For short running times, no cool-

ing is required if the solid walls are of proper material to act as heat 4
sinks.

Equations for turbulent flow in tubes indicate that the heat-
transfer coefficient is a function of the propellant properties based on
film temperature, flow area, and propellant flow. The heat-transfer co-
efficient varies significantly during the starting transient of a rocket
motor because of the variations in chamber pressure and propellant flow.
The coefficient should, however, reach a quasi-steady-state value soon
after constant propellant flow and constant chamber pressure have been
established and vary thereafter only as a result of changing property
values due to changing film temperature.

CJC=N

The observed rates of temperature rise through the walls of a
thermal-capacitance rocket engine can be analyzed by a number of meth-
ods, such as given in references 1 and 2. For this investigation, time-
temperature data were obtained from copper plugs installed in an ammonia-
oxygen rocket. Local values of heat-transfer coefficient were calculated
from six selected methods. These methods vary in complexity from approx-
imate methods to rather complex solutions of the partial differential Q
equations of unsteady heat conduction. The resulting heat-transfer co-
efficients, as well as an evaluation of each of the six methods based on
estimated accuracy, ease of calculation, and applicability, are presented
herein.

APPARATUS AND EXPERTMENTAL PROCEDURE

A 2400-pound-thrust, solid-wall, ammonia-oxygen rocket was used in
the experiments to obtain transient temperature data. A small copper
plug was devised which, when inserted in the wall of an uncooled rocket
engine, would approximate a one-dimensional finite slab. Under these
conditions, the local transient rate of heat transfer and the local heat-
transfer coefficient may be calculated from measured temperature distri-
butions within the element. The element had to be rugged in construction
in order to withstand the high temperatures and pressures within the
chemical rocket.

As shown in figures 1 and 2, tapered holes with a 39° included angle
were machined through the entire wall of the mild steel chamber and
through the copper nozzle at the throat. Rods of pure copper with diam- ]
eters of 0.6055 and 0.265 inch were used in the chamber and throat, re-
spectively. Copper was selected because its high thermal diffusivity
would delay the temperature rise at its heated surface. The plugs were
machined with a 0.005-inch by 39° taper to enable them to seize in the
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small diameter of the hole, but with a small contact area between the
plug and wall in order to minimize conduction between the plugs and the
chamber. The heat-transfer surfaces of the plugs were machined to the
contour of the chamber and nozzle throat.

Figure 1 shows the thermocouple stations on the copper plug. Nine
Chromel-Alumel thermocouples were used: two groups of four thermocou-
ples, each group located circumferentially 180° apart with equal axial
spacing, and one thermocouple on the cold end of the plug. The Chromel
and Alumel wires 0.008 inch in diameter were separately peened to the
surface in a plane perpendicular to the plug axis, the distance between
being about 1/64 inch. The position of the thermocouples on the copper
plug in the throat of the nozzle is shown in figure 2.

Sauereisen cement was placed in the gap between the plugs and the
wall. The sauereisen was used to keep heat conduction between the cop-
per plug and the chamber wall to a minimum to insure local one-
dimensional heat conduction. The plugs were held in place by a steel
cover in contact with the end of the plug. The cover was attached to

the rocket wall by screws.

The rocket engine was installed on a thrust stand. Propellant flow,
chamber pressure, oxidant-fuel ratio, and thrust were measured for the
evaluation of performance. The transient temperature data obtained from
the thermocouples were recorded with an oscillograph.

For the purpose of checking out the experimental procedure and in-
strumentation with a limited number of instrument channels, the transient
heat transfer in the chamber and in the nozzle was tested separately.

PRESENTATION OF DATA

Experimental heat-transfer data from a plug located in the chamber
and one located in the nozzle throat are presented herein. These data
are employed in the various analytical methods for computing heat-
transfer coefficients, as discussed in the next section.

The variation of chamber pressure with time for the two tests is
presented in figure 3. The steady-state chamber pressure and oxidant-
fuel ratio for the chamber test were approximately 513 pounds per square
inch absolute and 1.258, respectively. The combustion temperature was
estimated by multiplying the theoretical temperature at a chamber pres-
sure of 600 pounds per square inch absolute and an oxidant-fuel ratio of
1.258 (ref. 3) by the square of the ratio of the experimental to the
theoretical characteristic velocities. Because of the low gas velocity
in the chamber the temperature so determined, 3816° F, was considered to
be the recovery temperature.



The steady-state chamber pressure and oxidant-fuel ratio for the
throat test were approximately 474 pounds per square inch absolute and
1.347, respectively. The theoretical combustion temperature +t{ and

theoretical static temperature tg at the throat were calculated from
reference 3 as just described, assuming equilibrium composition during
isentropic expansion. (All symbols are defined in the appendix, p. 19).
The recovery temperature of 32850 F at the throat was computed from

tp = (tt - tg)r + tg, where r (recovery factor) was taken as 0.90. This
value of r was determined from a plot of r against Reynolds number
for flow along a cylinder given in reference 4.

The temperature data against time from the start of propellant in-
Jection for the chamber test are shown in figure 4. At the start of the
test there was a 13° F variation along the length of the plug. After
approximately 0.9 second, the temperatures at all points in the plug
rose in an orderly fashion. The pressure plots of figure 3 indicate
that combustion pressure had stabilized after 0.9 second. After 1.4 sec-
onds, the temperature rise for all thermocouples was approximately lin-
ear, and the maximum temperature difference between any two thermocouples
at the same radial distance from the heat-transfer surface was about
15° F. This difference became smaller as the distance from the heat-
transfer surface increased. For this run the slope of the temperature-
time curves was about the same at 0.25, 0.375, and 0.500 inch from the
heated end. Thermocouple number 1 was inoperative at the start of the
run.

A crossplot of temperature against distance at various times is
shown in figure 5 for the chamber test. The fact that Ot/dx # O at the
cold end indicates some heat transfer at this point. The vertical line
at 41 percent of plug length from the heated surface indicates the point
in the plug having approximately the average temperature.

In general, a wall temperature is necessary for the calculation of
the surface coefficient of heat transfer h. A thermocouple was not
mounted on the heat-transfer surface because of the resultant error in
measured temperature due to the large temperature gradient across the
area of the thermocouple. Thus, the thermocouples were mounted as shown
in figures 1 and 2, and the wall temperatures were obtained from a plot
on semilog paper of plug temperature against distance as shown in figure
6. It is noteworthy that on this type of plot the lines were quite lin-
ear near the heat-transfer surface and thus lent themselves to a more
reliable extraploation for the wall temperature. The wall temperatures
shown in figures 4 and 5 were determined from figure 6.

The variation of plug temperature with time from the start of pro-
pellant flow for the throat test is presented in figure 7. The variation
of plug temperature at the start of the run was approximately 35° F.

C1C=0T
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After approximately 0.9 second the plug temperatures rose in an orderly
fashion. This indicates that the starting transient was over, as veri-
fied by figure 3. Wall temperatures in figure 7 were determined by means
of a straight-line extrapolation through the two innermost temperature
readings on a semilog plot similar to figure 6. The distribution of tem-
perature with distance is shown in figure 8.

DISCUSSION OF METHODS

The following six methods (referred to herein as methods I to VI)
for the determination of one-dimensional transient heat flow are dis-
cussed generally. In all calculations it is assumed that radiation heat
transfer to the plugs is negligible.

I: Integration Method
If the plug is considered to be insulated on all surfaces except

the heat-transfer surface and the cold end of the plug, the time rate of

change of the integrated heat content must be equal to the rate of heat
flow through the surfaces:

L L
35— AyQy dx + k(?) = % 58— / (pAct)y dx + k@-)o

© (1a)

>|H

\ox

loss may be minimized by insulating the cold end of the plug. In equa-
tion (la), the heat content Qx 1s above some arbitrary reference level.
If the plug cross-sectional area is constant over its length, the area
term does not appear in equation (1a). If a short time increment after
the start of steady-state burning is considered, the time rate of change
of integrated heat content at the arithmetic average of these two times
is equal to the difference in heat content divided by the time interval.
Or, for a constant-area plug with heat loss from the cold end, equation
(1a) may be written as

The heat loss from the cold end is accounted for by k<§t> . This heat
0

L L

. 1
= —— t dx - t dx
*$eyt6p) T T - 6] / oo, / (petle,

(0] 0
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Equation (1b) may be used to obtain the heat flux. The heat-transfer
coefficient can be obtained from the following equationt:

L L,

1 1
(pCt)ez dx - (pCt)el dx

"3(0,+0,)” r - ty,i(6,46,) } 62 -6,

(6]

* k@—f‘)o,—g(efez) (2e)

In this equation the pc product is evaluated at the measured tempera-
ture at x, and k 1is evaluated at the temperature of the cold end. 1In
the following discussion, the value of h obtalned by neglecting the
cold-end heat loss is calculated by

L
1 1

t 65 -8
w,B(6,4+0,) | %201

hi = (pct), dx - (pct), ax
5(6,+6,} % - 6, 6,

0 0
(2v)

Heat-transfer coefficients for the chamber and throat plugs were
obtained by plotting pct against distance and mechanically integrating
the area between 67 and 6, in order to obtain a value neglecting
heat loss out of the cold end (eq. (2b)}). The heat loss from the cold
end was then approximated from figures 5 and 8 and used in equation (2a)
to obtain the total h. Por the chamber plug the time intervals of 1.2
to 1.80, 1.2 to 2.45, and 1.8 to 2.45 seconds were used to obtain values
of h at 1.50, 1.825, and 2.125 seconds, respectively. For the throat
plug the time intervals of 1.00 to 1.80, 1.00 to 2.72, 1.80 to 2.72, and

2.3 to 2.72 seconds were used to obtain values of h at 1.40, 1.86, 2.26,

and 2.51 seconds, respectively.

IT: Constant h Method

Reference 5 presents curves of (ty - t.}/(t, - t,) plotted against

nL/k with «8/L® as a parameter for fixed values of x/L where x is
measured from the heated surface. The curves were obtained by solving
the transient heat-flow equation in difference form using a fine-grid
spacing on a high-speed computing machine for several hL/k values (as—
suming constant h and ty,}. In order to use these curves, the material

GLS-d
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properties (k, p, and c) should be evaluated at t = (ty - to)/4 + to
at the time of reading +tx. According to Storm (ref. 6) this tempera-
ture t gives a good approximation to the solution of the nonlinear
equation for simple metals. To evaluate properties, ty may be approxi-
mated as a first trial; and, after hL/k has been determined, ty may
be found. Thus, the t values may be obtained by an iteration proce-
dure. After these material properties are evaluated, it is possible to
calculate (tx - to)/(tr - to) and ob/LZ from one temperature reading
and to find hL/k by using the appropriate x/L family of curves. The
values of h may then be determined from this parameter.

III: TCresci-Libby Method

Carslaw and Jaeger (ref. 2) solved the general one-dimensional par-
tial differential equation of transient heat conduction,

otk [32¢ '
25 )

for a finite slab with arbitrary surface-temperature distribution and
constant diffusivity by imposing the following boundary conditions on
this equation:

'tz‘to at =0

t =t + o(6) at x=1L (x measured from
unheated surface)

t/dx = 0 at x= 0

The resultant temperature distribution is given by

O

2 2
-ap2e aBSA
t(x,0) = t, + 2 e O cos Bpx | (-1)"ap, e T op(A)ar

where

B = !Zn + l!n
n

- 2L

To obtain g at the surface, this equation first must be differen-
tiated with respect to 6, and then the resultant expression may be



integrated with respect to x 1in the heat-conduction equation:

L
éx=L = pc (%g) dx

With this procedure, the expression for éx:L becomes (ref. 7)

e

Ty, 'Zi.}E ?(0) - Bl / @(K)e'ﬁga(e"m aA (5)
0

From a given wall-temperature distribution, éxaL may then be evaluated

and h computed from h = EEE{E——'
r = by

A smooth curve drawn through the extrapolated surface-temperature
distribution for both chamber and throat conditions was found to be ap-
proximated by a quadratic equation for the form ty = af2 + b + ¢ when
the rocket had achieved steady chamber pressure conditions. The curve
fit the wall temperature distribution within £10° F. However, it was
not possible to fit the quadratic equation to the wall temperature dis-
tribution when the chamber pressure was rising.

The equations @(6) = 262 + b6 and oA} = aA2 + DA were substi-
tuted into equation (5), and q and h were evaluated at a given burn-
ing time. The infinite sum was evaluated for eight terms. This was
enough to approximate the answer with a good degree of accuracy, since
the last term was less than 0.5 percent of the sum of the previous terms.

The equation (A} = aA2 + b\ was also substituted into equation
(4) to see how well the predicted temperature anywhere within the plug
at any time would match the experimental conditions. The analytical ex-
pression predicted the temperature at 0.5 inch from the heat-transfer
surface and at a burning time of 2.3 seconds within 2 percent of the ex-
perimental data after eight terms were calculated in the infinite sum.
This agreement of theory and experiment verifies the assumption of one-
dimensional heat flux and indicates that the instrumentation was reason-
ably accurate.

G G-H
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IV: Numerical Method

Max Jakob (ref. 8) suggests a numerical method to solve linear
unsteady-state conduction problems in a rod by following Dusinberre's
procedure. The Dusinberre procedure applies to a rod that has been di-
vided into volume increments by planes perpendicular to the one- '
dimensional heat flow. This method is essentially an application of a
finite-difference-type solution using a very coarse grid spacing. In
this respect the method is similar to method II (constant h). The tem-
perature at the center of each increment is assumed to be the represent-
ative temperature of the increment at time 6. At a surface where con-
vection occurs, an arrangement such as shown in figure 9 may be used.
The heat balance for the half-block Ax/2 becomes

BA(ty - 6080 + 22 (4 - 4,000 = poa X (ty 09 - ) (6)

where tw,AB 1s evaluated after a small time interval AS.

In order to apply the heat-balance equation, equation (6} was modi-
fied to incorporate a finite slab. In equation (6) the term
pcA(Ax/2) (tw,A0 - tw) was used to describe the heat absorbed by a very
thin slab. Since a finite slab is being considered in this application,
it is more reasonable to incorporate the average temperature of the
half-block ta,Ae (6x/2  in fig. 9). Thus, equation (6) becomes

hA(t, - £,)80 + k A= (b - )08 = 0B 2K (g pp - ta) (7)

In equation (7), Ax is two-thirds of the plug length and A9 was eval-
uated at a time interval of 0.2 second. The values p and ¢ were
evaluated at the average temperature of t5 A9 and tg, while k was
evaluated at the average temperature of t; and 1.

V: Greenfield Method
The Greenfield method (ref. 9) considers a rocket wall as a thermal
capacitor. It is a technique that may be applied herein for determina-

tion of the heat transferred from the combustion gases through the gas
film to the surface of the copper plug. The transient heat transfer may

be determined from
- We [ot
1= (@)a (€)
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where (0t/39), 1is the rate of change of average plug temperature with
respect to time. The heat-transfer coefficlent may be expressed by

-9
R (9)

This method is an approximation to method I (integration). The
similarity may be seen by rewriting equation (l) and neglecting heat
loss from the cold end of the plug:

L L
1
a = — (pet), dx - (pct), dx
3(0,46,) ~ 65 - 6y / P 01
0

By assuming p and c¢ to be constant and t to be a mean temperature
at times 67 and 05, the equation becomes

tg. -t
Q= pox 21 We (At)
6, -0, A \88)_

where

The average temperature of the chamber plug occurred at 41 percent
of the plug length or 0.427 inch measured from the heated end (fig. 5).
This distance was determined graphically by integrating under each curve
of t against x from 1.2 to 2.45 seconds. The slope of the average
plug temperature (dt/d9), was determined graphically from figures 4 and
7 at about 41 percent of the plug length. The specific heat of the plug
was evaluated at the average temperature and substituted into equations
(8) and (9) along with t,, t,, and the plug geometry.

VI: Semilog Extrapolation Method

Since four of the previous solutions require an extrapolation to
obtain ty 1in order to evaluate h, the possibility arises of evaluat-
ing h by this extrapolation. Plotting the data as log t against x
measured from the heated surface indicated that within the limit of
scatter a straight line could be drawn through the temperature readings
in most cases (fig. 6). If this linearity is assumed to hold to the
wall, both +ty and (Ot/dx),, may be found. The results then may be

lal Nat™ ng
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substituted in the following equation for h:

Kty
B= ¢ (10)

o(log t)
ox

RESULTS

Figures 10 and 11 present the varliation of transient heat-transfer
coefficient with burning time in the chamber and at the throat as com-
puted from the transient experimental data by the six selected methods.
The heat-transfer coefficients were evaluated during the range of burn-
ing times where the chamber pressure and propellant flow were relatively
constant. If the common assumption is made that the thermal boundary
layer adjusts instantaneously to the changes in wall temperature, these
values of h may be interpreted to be the quasi-steady-state values at
their corresponding experimental wall temperatures.

Table I shows the values of h in the chamber and at the throat
for burning times of 2.1 and 2.5 seconds, respectively. These values
were oObtained from figures 10 and 11. The percent variation of the
methods from the integration method, equation (2a), is also given. The
results were compared with the integration method because, as is made
clear in ANALYSIS OF METHODS, it is considered to be the most adaptable
to the experimental conditions. For most engineering purposes an accu-
racy of 420 percent may be considered as adequate.

The heat-transfer coefficient as calculated by method I (integra-
tion), equation (2a), which assumes h may vary with wall temperature,
shows a l-percent variation of h in the chamber during a burning time
of 0.62 second (fig. 10). Also shown is a ll-percent variation in h
at the throat during a burning time of 1.1l seconds (fig. 11). The
variations in wall temperature were about 125° and 2480 F, respectively.
Thus, the variation of h with time may be considered small for the
full flow duration of these tests.

Appreciable variations of h may occur, however, during the start-
ing transient when chamber pressure and gas temperature vary widely.

If the heat loss from the cold end of the plug is neglected, the
heat-transfer coefficient obtained by equation (2b) is lower than the
results given by equation (2a), as indicated in figures 10 and 11. For
the times considered in table I, this heat loss was 9 percent in the
chamber and 12 percent in the throat. Correspondingly, the heat-transfer
coefficients computed by equation (2b) were 9 and 12 percent lower than
those given by equation (2a) for the chamber and throat, respectively.
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Figures 10 and 11 show that method II (constant h) gives relatively
good agreement with method I, equation (Za), for both tests over a range
of burning times. In these computations of h by method II the time
increment 6 was taken from the initiation of propellant flow to the
time at which h was evaluated. Table I and figure 10 indicate that
method IT agrees well in the chamber and is 12 percent low in the throat
when compared with equation (2a). Considering the simplicity of appli-
cation of method II, this agreement with the integration method is con-
sidered relatively good even though certain assumptions made in the so-
lution of this method are not applicable to the test conditions. These
assumptions are that the free-siream temperature and h will be con-
stant over the duration of time 6. Also, there must be no heat loss
from the plug. Figure 3 shows that for the chamber test the chamber
pressure was constant after about 1 second of burning time. Thus, dur-
ing the transition period from the initiation of propellant flow to 1
second the combustion temperature and h were varying greatly. Also, a
comparison of equations (2a) and (2b) in table I for the chamber indi-
cates an appreciable heat loss from the cold end of the plug. For the
chamber tests these factors appear to be compensating because of the
good agreement of method II with method I.

An accurate evaluation of time 6 1is required in the application
of method II. Figures 3 and 4 for the chamber test show that the wall
temperature started to increase rapidly at the start of propellant flow.
However, figures 3 and 7 for the throat test indicate that the wall tem-
perature did not rise as rapidly at the initiation of propellant flow.

A temperature extrapolation to the initial temperature of the thermo-
couple closest to the heated surface indicates that rapid combustion did
not start until about 0.6 second after the initiation of propellant flow.
This ignition delay is indicated by the dashed line in figure 7. By
starting 6 at 0.6 second after the initiation of propellant flow, the
numerical agreement of this method with method I becomes better at the
throat, as seen in table I. The temperature extrapolation in the chamber
is coincident with the initiation of propellant flow, as seen by figure
3 and the dashed line in figure 4. Thus, seemingly better numerical
agreement of method II with method I was achieved for these data in both
chamber and throat by use of the temperature-time extrapolation. Method
IT is expected to be good for cases where the ignition delay and start-
ing transients are small compared with total burning time and where the
cold end of the plug is insulated.

Table I and figures 10 and 11 show that the values calculated by
method IITI (Cresci-Libby) are near agreement with method I, equation (2a),
near the end of burning for both tests. Method III is 16 percent high
in the chamber and 7 percent low in the throat. The heat-transfer coef-
ficlent more closely approaches the value of h computed with method I,
equation (2a), as the burning time is increased; this reflects the

L 9
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sensitivity of this method toward the starting transient. The heat-
transfer coefficient shows no tendency to level off near the end of burn-
ing. This is probably due to the difficulty of calculating a curve to
fit exactly the plot of surface temperature asgainst burning time, espe-
cially at the start of burning.

Method IV (numerical) and method V (Greenfield) agree well with
method I, equation (2a), near the end of burning for both tests as in-
dicated by table I and figures 10 and 11. Method IV is 7 percent high
in the chamber and 2 percent high at the throat. Method V is 2 percent
low in the chamber and 7 percent low at the throat. The results of these
methods in general approach more closely the values obtained by method I,
equation (2a), as the burning time is increased. These methods also show
a general leveling off of h near the end of burning time, indicating
that the effect of the starting transient is less appreciable.

Method VI (semilog extrapolation) gives appreciable variations of
h with burning time, as indicated in figures 10 and 11. The scatter of
h with burning time is primarily due to lack of accuracy in the deter-
mination of the slope and wall temperature. Small errors in the deter-
mination of the slope and temperature values at the wall result in rela-
tively large errors in the calculated values of h.

It is suggested in the literature that the rocket-motor designer
use the Colburn equation, reference 10, as a possible method for estimat-
ing the gas-side heat-transfer coefficient. It is also recommended in
the literature that all gas properties in the Colburn equation be evalu-
ated at a film temperature when applications involve large Reynolds num-
bers and At. The film temperature is evaluated as the average of the
static temperature and the wall temperature.

The variations of h with burning time computed by the Colburn
equation are plotted in figure 12 for both runs. The results show a 2-
percent variation in h in the chamber during a 1.05-second burning
time at constant pressure and a 4-percent variation in h at the throat
during a burning time of 1.52 seconds at constant pressure. This small
variation of h with burning time is in agreement with the results ob-
tained with method I, equation (2a). The absolute values of h also
agree within engineering accuracy with method I in the chamber and at
the throat. Inasmuch as large axial and circumferential variations of
heat flux have been observed in studies of solid-wall and regenerative
engines, this agreement of the values of h may be fortuitous. More
extensive investigations of the type reported herein are required to
establish whether or not the Colburn equation can predict heat-transfer
coefficlents in rocket engines with a sufficient degree of accuracy.
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ANALYSIS OF METHODS

In this section a short analysis of the applicability of each tran-
sient method is discussed.

Method I

The integration method provides the best means of calculating h
when burning times are short, provided the variations of h are contin-
wous and of not too great a magnitude. If the time increment is taken
after the start of steady-state combustion, the effect of the starting
transient is generally eliminated. Only a short period of combustion is
necessary to cbtain a value of heat-transfer coefficient. This method
allows for correction of heat losses from the cold end of the plug if
such losses exist. There is no doubt about the temperature at which to
evaluate the plug-material properties (p, ¢, and k), and their varia-
tion with temperature is accounted for (nonlinear case) within the accu-
racy to which the properties are known. The largest error is expected
to arise in obtaining the hot wall temperature. The wall temperature
can be either measured directly, or a sufficiently accurate extrapola-
tion may be obtained from a plot of log t against x through the in-
ner points. In obtaining heat-transfer coefficients, the error in wall
temperature appears in the form of ty - ty. This quantity is usually
larger than ty, so that a certain percentage error in 1y represents a
much smaller percentage error in heat-transfer coefficient. Concerning
method I, it may be stated that:

(1) Several thermocouples are needed to determine t = f(x) and ty
with reasonable accuracy.

(2) The solution is reasonably easy to obtain and contains only
minor approximations.

(3) If heat loss from the cold end of the plug occurs, it may be
accounted for - at least approximately.

(4) The results should be accurate as soon as stable burning is
achieved. The time interval used for the integration should be long
enough that inaccuracies of the interval do not become appreciable, but
not so long that the mean-time approximation is greatly in error.

Method ITI

The constant h method makes use of the solution of the linear
heat-flow equation but in a dimensionless form. With this method it must

lal Fal™1rd
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be assumed that the combustion temperature, heat-transfer coefficient,
and material properties are invariant with burning time. Furthermore,
the time increment over which h and t are applied must be evaluated.
The accuracy of the results depends on how nearly these assumptions are
satisfied. This method should be good for cases where the burning time
is long compared with the duration of the starting transient. For short
running times and adverse starting transient conditions, fairly accurate
approximations of h may be obtained by starting 6 from the estimated
time at which the wall temperature starts to increase rapidly. The fol-
lowing statements may be made concerning method ITI:

(1) Only one thermocouple, from which a reading is taken at an ac-
curately determined time from the start of heat addition, is needed.

(2) Since curves can be used to determine h, the reduction of data
is very simple.

(3) The plug temperature must be essentially uniform at the start
of heat addition.

Method III

The Cresci-Libby method is a very rigorous mathematical approach
to the solution of the linear heat-transfer equation. The reliability
of the results is influenced by the accuracy with which 1Ty can be de-
termined and with which ty = £(8) can be expressed by an equation over
the whole period of running. The curve of ty and time is very diffi-
cult to fit during the starting transient, and thus there may be an er-
ror due to this transient. How near the assumption of constant material
properties approximates the actual case is also open to some question.
The following statements may be made about method III:

(1) The plug temperature must be essentially uniform at the start
of heat addition.

(2) Several thermocouples are needed to obtain an approximate wall
temperature unless a thermocouple can be located on the heat-transfer
surface of the plug.

(3) The results are dependent on how well ty = £(6) can be
expressed.

(4) The equation for q from which h is obtained is relatively
difficult to solve.
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Method IV

The numerical method, as used in the present application, assumes
that dt/dx at the point one-third of the distance from the hot end of
the plug is represented by the difference in the temperature at the
point two-thirds of the distance from the hot end and the heated wall
divided by 2L/3. It also assumes that the time rate of change of the
center of the inner one-third of the plug represents the time rate of
change of this whole segment. The method is essentially an application
of a finite-difference-type solution using a very coarse grid spacing.
The accuracy of these assumptions obviously is greatly dependent on the
shape of the curves of t = f(x) and t = £(8). The accuracy is also
not as good as method II because of the coarser grid spacing used herein.
The following statements may be made about method IV:

(1) Several thermocouples are needed to determine an approximate
wall temperature by extrapolation unless a thermocouple can be located
exactly on the heat-transfer surface of the plug.

(2) Although this method furnishes numbers that are in fairly good
agreement with more rigorous methods in this case, there is no assurance
that this would always be the case because of the assumptions involved.

Method V

Tne Greenfield method furnishes a means of determining h by as-
suming that at some time the time rate of change of temperature at a
single point in the plug divided by the difference between gas-recovery
temperature and wall temperature is proportional to the heat-transfer
coefficient. However, this is true only at one time for this particular
thermocouple location. The results indicated that, when the tempersture
reading 41 percent of the way from the hot end is used, this time oc-
curred at the end of the run since method V gave the best agreement with
method I at that location. Theoretically, if a temperature nearer the
heated surface had been used, the time of evaluation would be later
since the slope is higher at a given time and vice versa. Therefore,
the following observations may be made about method V:

(1) Determination of é requires only one thermocouple. However,
the time at which Ot/d6 is taken to give a realistic value of q must
be determined by some other method.

(2) The transient heat transfer q has little significance; and,
if h is to be determined, several thermocouples are required to obtain
the approximate wall temperature by extrapolation unless a thermocouple
can be located on the heat-transfer surface of the plug.

s

[a R Nalng



E=-075

CH=35

»

17

Method VI

The semilog extrapolation method makes use of the assumption that
log t plotted against distance is linear through the two innermost tem-
perature readings to the wall. If this is true, the slope ot/ox at
the wall and 4ty is determined, from which h may be calculated if
t, 1s known. The following statements may be made about method VI:

(1) At least two thermocouples must be used, and they should be
close to the inner wall.

(2) Small errors in the slope and temperature values at the wall
result in relatively large errors in calculated values of h.

CONCLUDING REMARKS

It has been shown that quasi-steady-state, gas-side heat-transfer
coefficients may be determined from transient one-dimensional tempera-
ture data with small error over an appreciable range of wall temperature.
The data were analyzed by six selected methods to obtain the surface
heat-transfer coefficient h. To apply these methods to the data, it is
generally necessary to obtain short, smooth transitions to stable oper-
ating conditions. Insulating all surfaces of the plug except the heat-
transfer surface helps to achieve local, one-dimensional conditions and
also improves the accuracy of application of the methods to the data.

In the determination of local heat-transfer coefficients based on
experimental results cobtained from an ammonia-oxygen rocket, the follow-
ing statements can be made:

l. Methods I to V give comparable values of h near the end of
burning time for both chamber and throat tests.

2. Method I (integration) is reasonably easy to apply and is par-
ticularly good when running times are short.

3. Method II (constant h) is probably the easiest of all to apply
and is particularly good when running times are long. It requires the
use of only one thermocouple.

4. The derivation of method III (Cresci-Libby) is rigorous but is
the most difficult to apply.

5. Method IV (numerical) is less accurate than methods I and II.

6. The accuracy of methods I to IV may be affected by the starting
transient, but this effect decreases with burning time.
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7. Method V (Greenfield) agrees well with methods I to IV at the
end of burning, but some technique is required to select the time at
which to determine dt/de and ty at a fixed value of x/L.

8. Method IV (semilog extrapolation) is too inaccurate for this
type of application.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, January 20, 1960
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APPENDIX - SYMBOLS
area, sq in.
specific heat at constant pressure, Btu/(1b)(°F)
diameter, in. (fig. 9)
function
surface coefficient of heat transfer, Btuf/(sq in.)(sec)(OF)
thermal conductivity, Btu/(in.)(sec)(CF)
length of plug, in.
quantity of heat, Btu/cu in.
quantity of heat per unit area per unit time, Btu/(sec)(sq in.)
recovery factor
temperature, OF
weight of plug, 1b
distance normal to the heated surface, in.
thermal diffusivity, sq in./sec
burning time, sec
integration variable, time
density, lb/cu in.

surface temperature function

Subscripts:

a

e}

average
temperature of solid at zero burning time
recovery

static
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10.

total
wall
distance
2 time
cold end of plug

location of (2/3L) (see fig. 9)
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